3.4.17 \(\int (7+5 x^2)^3 \sqrt {2+x^2-x^4} \, dx\) [317]

3.4.17.1 Optimal result
3.4.17.2 Mathematica [C] (verified)
3.4.17.3 Rubi [A] (verified)
3.4.17.4 Maple [A] (verified)
3.4.17.5 Fricas [A] (verification not implemented)
3.4.17.6 Sympy [F]
3.4.17.7 Maxima [F]
3.4.17.8 Giac [F]
3.4.17.9 Mupad [F(-1)]

3.4.17.1 Optimal result

Integrand size = 24, antiderivative size = 95 \[ \int \left (7+5 x^2\right )^3 \sqrt {2+x^2-x^4} \, dx=\frac {1}{63} x \left (5956+14691 x^2\right ) \sqrt {2+x^2-x^4}-\frac {1825}{21} x \left (2+x^2-x^4\right )^{3/2}-\frac {125}{9} x^3 \left (2+x^2-x^4\right )^{3/2}+\frac {79411}{63} E\left (\left .\arcsin \left (\frac {x}{\sqrt {2}}\right )\right |-2\right )-\frac {8735}{21} \operatorname {EllipticF}\left (\arcsin \left (\frac {x}{\sqrt {2}}\right ),-2\right ) \]

output
-1825/21*x*(-x^4+x^2+2)^(3/2)-125/9*x^3*(-x^4+x^2+2)^(3/2)+79411/63*Ellipt 
icE(1/2*x*2^(1/2),I*2^(1/2))-8735/21*EllipticF(1/2*x*2^(1/2),I*2^(1/2))+1/ 
63*x*(14691*x^2+5956)*(-x^4+x^2+2)^(1/2)
 
3.4.17.2 Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 8.14 (sec) , antiderivative size = 107, normalized size of antiderivative = 1.13 \[ \int \left (7+5 x^2\right )^3 \sqrt {2+x^2-x^4} \, dx=\frac {-9988 x+9938 x^3+21660 x^5-1116 x^7-3725 x^9-875 x^{11}+79411 i \sqrt {4+2 x^2-2 x^4} E\left (i \text {arcsinh}(x)\left |-\frac {1}{2}\right .\right )-106014 i \sqrt {4+2 x^2-2 x^4} \operatorname {EllipticF}\left (i \text {arcsinh}(x),-\frac {1}{2}\right )}{63 \sqrt {2+x^2-x^4}} \]

input
Integrate[(7 + 5*x^2)^3*Sqrt[2 + x^2 - x^4],x]
 
output
(-9988*x + 9938*x^3 + 21660*x^5 - 1116*x^7 - 3725*x^9 - 875*x^11 + (79411* 
I)*Sqrt[4 + 2*x^2 - 2*x^4]*EllipticE[I*ArcSinh[x], -1/2] - (106014*I)*Sqrt 
[4 + 2*x^2 - 2*x^4]*EllipticF[I*ArcSinh[x], -1/2])/(63*Sqrt[2 + x^2 - x^4] 
)
 
3.4.17.3 Rubi [A] (verified)

Time = 0.32 (sec) , antiderivative size = 106, normalized size of antiderivative = 1.12, number of steps used = 11, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.458, Rules used = {1518, 27, 2207, 25, 1490, 27, 1494, 27, 399, 321, 327}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \left (5 x^2+7\right )^3 \sqrt {-x^4+x^2+2} \, dx\)

\(\Big \downarrow \) 1518

\(\displaystyle -\frac {1}{9} \int -3 \sqrt {-x^4+x^2+2} \left (1825 x^4+2455 x^2+1029\right )dx-\frac {125}{9} \left (-x^4+x^2+2\right )^{3/2} x^3\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{3} \int \sqrt {-x^4+x^2+2} \left (1825 x^4+2455 x^2+1029\right )dx-\frac {125}{9} x^3 \left (-x^4+x^2+2\right )^{3/2}\)

\(\Big \downarrow \) 2207

\(\displaystyle \frac {1}{3} \left (-\frac {1}{7} \int -\left (\left (24485 x^2+10853\right ) \sqrt {-x^4+x^2+2}\right )dx-\frac {1825}{7} x \left (-x^4+x^2+2\right )^{3/2}\right )-\frac {125}{9} x^3 \left (-x^4+x^2+2\right )^{3/2}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {1}{3} \left (\frac {1}{7} \int \left (24485 x^2+10853\right ) \sqrt {-x^4+x^2+2}dx-\frac {1825}{7} x \left (-x^4+x^2+2\right )^{3/2}\right )-\frac {125}{9} x^3 \left (-x^4+x^2+2\right )^{3/2}\)

\(\Big \downarrow \) 1490

\(\displaystyle \frac {1}{3} \left (\frac {1}{7} \left (\frac {1}{3} x \left (14691 x^2+5956\right ) \sqrt {-x^4+x^2+2}-\frac {1}{15} \int -\frac {5 \left (79411 x^2+53206\right )}{\sqrt {-x^4+x^2+2}}dx\right )-\frac {1825}{7} x \left (-x^4+x^2+2\right )^{3/2}\right )-\frac {125}{9} x^3 \left (-x^4+x^2+2\right )^{3/2}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{3} \left (\frac {1}{7} \left (\frac {1}{3} \int \frac {79411 x^2+53206}{\sqrt {-x^4+x^2+2}}dx+\frac {1}{3} x \sqrt {-x^4+x^2+2} \left (14691 x^2+5956\right )\right )-\frac {1825}{7} x \left (-x^4+x^2+2\right )^{3/2}\right )-\frac {125}{9} x^3 \left (-x^4+x^2+2\right )^{3/2}\)

\(\Big \downarrow \) 1494

\(\displaystyle \frac {1}{3} \left (\frac {1}{7} \left (\frac {2}{3} \int \frac {79411 x^2+53206}{2 \sqrt {2-x^2} \sqrt {x^2+1}}dx+\frac {1}{3} x \sqrt {-x^4+x^2+2} \left (14691 x^2+5956\right )\right )-\frac {1825}{7} x \left (-x^4+x^2+2\right )^{3/2}\right )-\frac {125}{9} x^3 \left (-x^4+x^2+2\right )^{3/2}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{3} \left (\frac {1}{7} \left (\frac {1}{3} \int \frac {79411 x^2+53206}{\sqrt {2-x^2} \sqrt {x^2+1}}dx+\frac {1}{3} x \sqrt {-x^4+x^2+2} \left (14691 x^2+5956\right )\right )-\frac {1825}{7} x \left (-x^4+x^2+2\right )^{3/2}\right )-\frac {125}{9} x^3 \left (-x^4+x^2+2\right )^{3/2}\)

\(\Big \downarrow \) 399

\(\displaystyle \frac {1}{3} \left (\frac {1}{7} \left (\frac {1}{3} \left (79411 \int \frac {\sqrt {x^2+1}}{\sqrt {2-x^2}}dx-26205 \int \frac {1}{\sqrt {2-x^2} \sqrt {x^2+1}}dx\right )+\frac {1}{3} x \sqrt {-x^4+x^2+2} \left (14691 x^2+5956\right )\right )-\frac {1825}{7} x \left (-x^4+x^2+2\right )^{3/2}\right )-\frac {125}{9} x^3 \left (-x^4+x^2+2\right )^{3/2}\)

\(\Big \downarrow \) 321

\(\displaystyle \frac {1}{3} \left (\frac {1}{7} \left (\frac {1}{3} \left (79411 \int \frac {\sqrt {x^2+1}}{\sqrt {2-x^2}}dx-26205 \operatorname {EllipticF}\left (\arcsin \left (\frac {x}{\sqrt {2}}\right ),-2\right )\right )+\frac {1}{3} x \sqrt {-x^4+x^2+2} \left (14691 x^2+5956\right )\right )-\frac {1825}{7} x \left (-x^4+x^2+2\right )^{3/2}\right )-\frac {125}{9} x^3 \left (-x^4+x^2+2\right )^{3/2}\)

\(\Big \downarrow \) 327

\(\displaystyle \frac {1}{3} \left (\frac {1}{7} \left (\frac {1}{3} \left (79411 E\left (\left .\arcsin \left (\frac {x}{\sqrt {2}}\right )\right |-2\right )-26205 \operatorname {EllipticF}\left (\arcsin \left (\frac {x}{\sqrt {2}}\right ),-2\right )\right )+\frac {1}{3} x \sqrt {-x^4+x^2+2} \left (14691 x^2+5956\right )\right )-\frac {1825}{7} x \left (-x^4+x^2+2\right )^{3/2}\right )-\frac {125}{9} x^3 \left (-x^4+x^2+2\right )^{3/2}\)

input
Int[(7 + 5*x^2)^3*Sqrt[2 + x^2 - x^4],x]
 
output
(-125*x^3*(2 + x^2 - x^4)^(3/2))/9 + ((-1825*x*(2 + x^2 - x^4)^(3/2))/7 + 
((x*(5956 + 14691*x^2)*Sqrt[2 + x^2 - x^4])/3 + (79411*EllipticE[ArcSin[x/ 
Sqrt[2]], -2] - 26205*EllipticF[ArcSin[x/Sqrt[2]], -2])/3)/7)/3
 

3.4.17.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 321
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> S 
imp[(1/(Sqrt[a]*Sqrt[c]*Rt[-d/c, 2]))*EllipticF[ArcSin[Rt[-d/c, 2]*x], b*(c 
/(a*d))], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[a, 
0] &&  !(NegQ[b/a] && SimplerSqrtQ[-b/a, -d/c])
 

rule 327
Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[ 
(Sqrt[a]/(Sqrt[c]*Rt[-d/c, 2]))*EllipticE[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d) 
)], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[a, 0]
 

rule 399
Int[((e_) + (f_.)*(x_)^2)/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_) 
^2]), x_Symbol] :> Simp[f/b   Int[Sqrt[a + b*x^2]/Sqrt[c + d*x^2], x], x] + 
 Simp[(b*e - a*f)/b   Int[1/(Sqrt[a + b*x^2]*Sqrt[c + d*x^2]), x], x] /; Fr 
eeQ[{a, b, c, d, e, f}, x] &&  !((PosQ[b/a] && PosQ[d/c]) || (NegQ[b/a] && 
(PosQ[d/c] || (GtQ[a, 0] && ( !GtQ[c, 0] || SimplerSqrtQ[-b/a, -d/c])))))
 

rule 1490
Int[((d_) + (e_.)*(x_)^2)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symb 
ol] :> Simp[x*(2*b*e*p + c*d*(4*p + 3) + c*e*(4*p + 1)*x^2)*((a + b*x^2 + c 
*x^4)^p/(c*(4*p + 1)*(4*p + 3))), x] + Simp[2*(p/(c*(4*p + 1)*(4*p + 3))) 
 Int[Simp[2*a*c*d*(4*p + 3) - a*b*e + (2*a*c*e*(4*p + 1) + b*c*d*(4*p + 3) 
- b^2*e*(2*p + 1))*x^2, x]*(a + b*x^2 + c*x^4)^(p - 1), x], x] /; FreeQ[{a, 
 b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && 
 GtQ[p, 0] && FractionQ[p] && IntegerQ[2*p]
 

rule 1494
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbo 
l] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[2*Sqrt[-c]   Int[(d + e*x^2)/(Sqr 
t[b + q + 2*c*x^2]*Sqrt[-b + q - 2*c*x^2]), x], x]] /; FreeQ[{a, b, c, d, e 
}, x] && GtQ[b^2 - 4*a*c, 0] && LtQ[c, 0]
 

rule 1518
Int[((d_) + (e_.)*(x_)^2)^(q_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x 
_Symbol] :> Simp[e^q*x^(2*q - 3)*((a + b*x^2 + c*x^4)^(p + 1)/(c*(4*p + 2*q 
 + 1))), x] + Simp[1/(c*(4*p + 2*q + 1))   Int[(a + b*x^2 + c*x^4)^p*Expand 
ToSum[c*(4*p + 2*q + 1)*(d + e*x^2)^q - a*(2*q - 3)*e^q*x^(2*q - 4) - b*(2* 
p + 2*q - 1)*e^q*x^(2*q - 2) - c*(4*p + 2*q + 1)*e^q*x^(2*q), x], x], x] /; 
 FreeQ[{a, b, c, d, e, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + 
 a*e^2, 0] && IGtQ[q, 1]
 

rule 2207
Int[(Px_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> With[{n = 
 Expon[Px, x^2], e = Coeff[Px, x^2, Expon[Px, x^2]]}, Simp[e*x^(2*n - 3)*(( 
a + b*x^2 + c*x^4)^(p + 1)/(c*(2*n + 4*p + 1))), x] + Simp[1/(c*(2*n + 4*p 
+ 1))   Int[(a + b*x^2 + c*x^4)^p*ExpandToSum[c*(2*n + 4*p + 1)*Px - a*e*(2 
*n - 3)*x^(2*n - 4) - b*e*(2*n + 2*p - 1)*x^(2*n - 2) - c*e*(2*n + 4*p + 1) 
*x^(2*n), x], x], x]] /; FreeQ[{a, b, c, p}, x] && PolyQ[Px, x^2] && Expon[ 
Px, x^2] > 1 && NeQ[b^2 - 4*a*c, 0] &&  !LtQ[p, -1]
 
3.4.17.4 Maple [A] (verified)

Time = 2.89 (sec) , antiderivative size = 152, normalized size of antiderivative = 1.60

method result size
risch \(-\frac {x \left (875 x^{6}+4600 x^{4}+7466 x^{2}-4994\right ) \left (x^{4}-x^{2}-2\right )}{63 \sqrt {-x^{4}+x^{2}+2}}+\frac {26603 \sqrt {2}\, \sqrt {-2 x^{2}+4}\, \sqrt {x^{2}+1}\, F\left (\frac {x \sqrt {2}}{2}, i \sqrt {2}\right )}{63 \sqrt {-x^{4}+x^{2}+2}}-\frac {79411 \sqrt {2}\, \sqrt {-2 x^{2}+4}\, \sqrt {x^{2}+1}\, \left (F\left (\frac {x \sqrt {2}}{2}, i \sqrt {2}\right )-E\left (\frac {x \sqrt {2}}{2}, i \sqrt {2}\right )\right )}{126 \sqrt {-x^{4}+x^{2}+2}}\) \(152\)
default \(-\frac {4994 x \sqrt {-x^{4}+x^{2}+2}}{63}+\frac {26603 \sqrt {2}\, \sqrt {-2 x^{2}+4}\, \sqrt {x^{2}+1}\, F\left (\frac {x \sqrt {2}}{2}, i \sqrt {2}\right )}{63 \sqrt {-x^{4}+x^{2}+2}}-\frac {79411 \sqrt {2}\, \sqrt {-2 x^{2}+4}\, \sqrt {x^{2}+1}\, \left (F\left (\frac {x \sqrt {2}}{2}, i \sqrt {2}\right )-E\left (\frac {x \sqrt {2}}{2}, i \sqrt {2}\right )\right )}{126 \sqrt {-x^{4}+x^{2}+2}}+\frac {125 x^{7} \sqrt {-x^{4}+x^{2}+2}}{9}+\frac {4600 x^{5} \sqrt {-x^{4}+x^{2}+2}}{63}+\frac {7466 x^{3} \sqrt {-x^{4}+x^{2}+2}}{63}\) \(176\)
elliptic \(-\frac {4994 x \sqrt {-x^{4}+x^{2}+2}}{63}+\frac {26603 \sqrt {2}\, \sqrt {-2 x^{2}+4}\, \sqrt {x^{2}+1}\, F\left (\frac {x \sqrt {2}}{2}, i \sqrt {2}\right )}{63 \sqrt {-x^{4}+x^{2}+2}}-\frac {79411 \sqrt {2}\, \sqrt {-2 x^{2}+4}\, \sqrt {x^{2}+1}\, \left (F\left (\frac {x \sqrt {2}}{2}, i \sqrt {2}\right )-E\left (\frac {x \sqrt {2}}{2}, i \sqrt {2}\right )\right )}{126 \sqrt {-x^{4}+x^{2}+2}}+\frac {125 x^{7} \sqrt {-x^{4}+x^{2}+2}}{9}+\frac {4600 x^{5} \sqrt {-x^{4}+x^{2}+2}}{63}+\frac {7466 x^{3} \sqrt {-x^{4}+x^{2}+2}}{63}\) \(176\)

input
int((5*x^2+7)^3*(-x^4+x^2+2)^(1/2),x,method=_RETURNVERBOSE)
 
output
-1/63*x*(875*x^6+4600*x^4+7466*x^2-4994)*(x^4-x^2-2)/(-x^4+x^2+2)^(1/2)+26 
603/63*2^(1/2)*(-2*x^2+4)^(1/2)*(x^2+1)^(1/2)/(-x^4+x^2+2)^(1/2)*EllipticF 
(1/2*x*2^(1/2),I*2^(1/2))-79411/126*2^(1/2)*(-2*x^2+4)^(1/2)*(x^2+1)^(1/2) 
/(-x^4+x^2+2)^(1/2)*(EllipticF(1/2*x*2^(1/2),I*2^(1/2))-EllipticE(1/2*x*2^ 
(1/2),I*2^(1/2)))
 
3.4.17.5 Fricas [A] (verification not implemented)

Time = 0.08 (sec) , antiderivative size = 73, normalized size of antiderivative = 0.77 \[ \int \left (7+5 x^2\right )^3 \sqrt {2+x^2-x^4} \, dx=\frac {-158822 i \, \sqrt {2} x E(\arcsin \left (\frac {\sqrt {2}}{x}\right )\,|\,-\frac {1}{2}) + 185425 i \, \sqrt {2} x F(\arcsin \left (\frac {\sqrt {2}}{x}\right )\,|\,-\frac {1}{2}) + {\left (875 \, x^{8} + 4600 \, x^{6} + 7466 \, x^{4} - 4994 \, x^{2} - 79411\right )} \sqrt {-x^{4} + x^{2} + 2}}{63 \, x} \]

input
integrate((5*x^2+7)^3*(-x^4+x^2+2)^(1/2),x, algorithm="fricas")
 
output
1/63*(-158822*I*sqrt(2)*x*elliptic_e(arcsin(sqrt(2)/x), -1/2) + 185425*I*s 
qrt(2)*x*elliptic_f(arcsin(sqrt(2)/x), -1/2) + (875*x^8 + 4600*x^6 + 7466* 
x^4 - 4994*x^2 - 79411)*sqrt(-x^4 + x^2 + 2))/x
 
3.4.17.6 Sympy [F]

\[ \int \left (7+5 x^2\right )^3 \sqrt {2+x^2-x^4} \, dx=\int \sqrt {- \left (x^{2} - 2\right ) \left (x^{2} + 1\right )} \left (5 x^{2} + 7\right )^{3}\, dx \]

input
integrate((5*x**2+7)**3*(-x**4+x**2+2)**(1/2),x)
 
output
Integral(sqrt(-(x**2 - 2)*(x**2 + 1))*(5*x**2 + 7)**3, x)
 
3.4.17.7 Maxima [F]

\[ \int \left (7+5 x^2\right )^3 \sqrt {2+x^2-x^4} \, dx=\int { \sqrt {-x^{4} + x^{2} + 2} {\left (5 \, x^{2} + 7\right )}^{3} \,d x } \]

input
integrate((5*x^2+7)^3*(-x^4+x^2+2)^(1/2),x, algorithm="maxima")
 
output
integrate(sqrt(-x^4 + x^2 + 2)*(5*x^2 + 7)^3, x)
 
3.4.17.8 Giac [F]

\[ \int \left (7+5 x^2\right )^3 \sqrt {2+x^2-x^4} \, dx=\int { \sqrt {-x^{4} + x^{2} + 2} {\left (5 \, x^{2} + 7\right )}^{3} \,d x } \]

input
integrate((5*x^2+7)^3*(-x^4+x^2+2)^(1/2),x, algorithm="giac")
 
output
integrate(sqrt(-x^4 + x^2 + 2)*(5*x^2 + 7)^3, x)
 
3.4.17.9 Mupad [F(-1)]

Timed out. \[ \int \left (7+5 x^2\right )^3 \sqrt {2+x^2-x^4} \, dx=\int {\left (5\,x^2+7\right )}^3\,\sqrt {-x^4+x^2+2} \,d x \]

input
int((5*x^2 + 7)^3*(x^2 - x^4 + 2)^(1/2),x)
 
output
int((5*x^2 + 7)^3*(x^2 - x^4 + 2)^(1/2), x)